main| new issue| archive| editorial board| for the authors| publishing house|
Πσρρκθι
Main page
New issue
Archive of articles
Editorial board
For the authors
Publishing house

 

 


ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 8. Vol. 31. 2025

DOI: 10.17587/it.31.419-425

T. I. Buldakova, Dr. Sc., Professor, V. A. Gordeev, Master's Student,
Bauman Moscow State Technical University, Moscow, Russian Federation

Research of Neural Network Models of Gesture Recognition in the Presence of Negative Factors

Received on 14.10.2024
Accepted on 28.10.2024

The problem of automatic recognition of gesture images for computer vision systems is considered. The process of preparing the initial data, creating a training and test dataset is described. A custom dataset has been created, as well as integration and preparation of external data. Research of popular neural network methods of sign language recognition has been conducted and an assessment of their effectiveness in the presence of negative factors has been obtained. Recommendations are given to improve the quality of gesture recognition. Keywords: gestures, images, recognition methods, negative factors, neural networks

P. 419-425

Full text on eLIBRARY

 

References

  1. Valdivieso L., Vasconez J. P., Barona L., Benalcazar M. E. Recognition of Hand Gestures Based on EMG Signals with Deep and Double-Deep Q-Networks, Sensors, 2023, vol. 23(8), p. 3905, DOI: 10.3390/s23083905.
  2. Ma'asum F. F. M., Sulaiman S., Saparon A. An overview of hand gestures recognition system techniques, IOP Conference Series: Materials Science and Engineering, IOP Publishing, Bristol, UK, 2015, vol. 99, p. 012012, DOI: 10.1088/1757-899X/99/1/012012.
  3. Katasev A. S., Tukhbatullin T. I. Sign language recognition using a convolutional neural network, Vestnik Tekhnologicheskogo universiteta, 2023, vol. 26, no. 4, pp. 53—57, DOI: 10.55421/1998-7072_2023_26_4_53 (in Russian).
  4. Grif M. G., Lakiya R., Prikhodko A. L., Bakeev M. A., Rajalakshmi E. Recognition of Russian and Indian sign languages based on machine learning, Sistemy analiza i obrabotki dannykh, 2021, no. 3(83), pp. 53—74, DOI: 10.17212/2782-2001-2021-3-53-74 (in Russian).
  5. Yasen M., Jusoh S. S. A systematic review on hand gesture recognition techniques, challenges and applications, PeerJ Computer Science, 2019, no. 5, DOI: 10.7717/peerj-cs.218.
  6. Cheok M. J., Omar Z., Jaward M. H. A review of hand gesture and sign language recognition techniques, International Journal of Machine Learning and Cybernetics, 2019, vol. 10, pp. 131—153, DOI: 10.1007/s13042-017-0705-5.
  7. Ryumin D. A., Kagirov I. A., Aksenov A. A., Karpov A. A. Analytical review of models and methods of automatic recognition of gestures and sign languages, Informatsionno-upravlyayushchie sistemy, 2021, no. 6 (115), pp. 10—20, DOI: 10.31799/1684-8853­2021-6-10-20 (in Russian).
  8. Kurbanova K. Sh. Research of stages, types of modeling and methods of gesture recognition, Informacionnye tehnologii, 2024, vol. 30, no. 2, pp. 85—90, DOI: 10.17587/it.30.85—90 (in Russian).
  9. Buldakova T. I., Suyatinov S. I. Biological Principles of Integration Information at Big Data Processing, International Russian Automation Conference (RusAutoCon), Sochi, Russia, 2019, p. 8867710, DOI: 10.1109/RUSAUTOCON.2019.8867710.
  10. Kuntsevich A. A., Kulik G. V., Zhitnik M. E. Machine learning technologies and image capture for sign language recognition, Big Data and Advanced Analytics, 2020, no. 6-2, pp. 308—310 (in Russian).
  11. Vishnevskaya Yu. A., Buldakova T. I. Application of a synergetic model for character recognition, Yuzhno-Uralskaya molodezhnaya shkola po matematicheskomu modelirovaniyu: Sbornik trudov IV vserossiyskoy studencheskoy nauchno-prakticheskoy konferentsii, Chelyabinsk, SUSU Publishing Center, 2021, pp. 58—62 (in Russian).
  12. Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A. SSD: Single Shot MultiBox Detector, Leibe B., Matas J., Sebe N., Welling M. (eds), Computer Vision — ECCV 2016. Lecture Notes in Computer Science, 2016, vol. 9905, pp. 21—37, Springer, Cham, DOI: 10.1007/978-3-319-46448-0_2.
  13. Ghosh A., Sufian A., Sultana F., Chakrabarti A., De D. Fundamental Concepts of Convolutional Neural Network, Bal-as V., Kumar R., Srivastava R. (eds) Recent Trends and Advances in Artificial Intelligence and Internet of Things. Intelligent Systems Reference Library, 2020, vol. 172, Springer, Cham., DOI: 10.1007/978-3-030-32644-9_36.
  14. Tammina S. Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images, International Journal of Scientific and Research Publications (IJSRP), 2019, vol. 9, iss. 10, DOI: 10.29322/IJSRP.9.10.2019.p9420.
  15. Theckedath D., Sedamkar R. R. Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks, SN Computer Science, 2020, vol. 1, no. 79, DOI: 10.1007/s42979-020-0114-9.

To the contents