ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И СЕТИ COMPUTING SYSTEMS AND NETWORKS

УДК 004.272

Ш. А. Оцоков, д-р техн. наук, доц. e-mail: shamil24@mail.ru, Московский энергетический институт (технический университет)

Ускорение высокоточных вычислений за счет распараллеливания операции округления в комплексе систем счисления¹

Предложен способ ускорения высокоточных вычислений за счет распараллеливания операции округления на основе комплекса систем счисления: модулярной и знакоразрядной. Представлены преимущества данного подхода при выполнении других немодульных операций, таких как обратное преобразование в позиционную систему счисления, сравнение чисел, определение знака.

Ключевые слова: модулярная арифметика, высокоточные вычисления, избыточная система

Ввеление

В вычислительной практике при решении ряда прикладных задач на ЭВМ в таких областях как наноэлектроника, ядерная физика, робототехника и др. требуются высокоточные компьютерные вычисления. Библиотеки, их поддерживающие, такие как, например, ZREAL (Россия), MPARITH (Германия), GMP (США) и др., имеют недостаток — резкое возрастание времени вычислений при увеличении числа арифметических операций или точности [1]. Данный недостаток препятствует их применению в суперкомпьютерных вычислениях и других областях, критичных к скорости выполнения арифметических операций.

Известны следующие достоинства и недостатки модулярной и симметричной знакоразрядной систем счисления [2, 3]:

- высокая скорость выполнения умножения, сложения, вычитания в модулярной системе счисления;
- сложность выполнения немодульных операций: деления, сравнения, округления, определение знака и др. в модулярной системе счисления;
- отсутствие распространения переносов при сложении в симметричной знакоразрядной системе счисления.

В работе [4] представлен подход к ускорению высокоточных вычислений за счет применения модулярной системы счисления (МСС), в которой получен эффект ускорения при решении ряда частных задач.

В высокоточных вычислениях в модулярной арифметике по предложенной схеме узким звеном, снижающим эффект ускорения, является операция

округления. Дальнейшие исследования посвящены ускорению операции округления [5].

Цель настоящей работы состоит в ускорении операции округления за счет использования достоинств модулярной и знакоразрядной систем счисления, т. е. комплекса систем счисления.

Рассмотрим формат представления чисел, алгоритмы выполнения операций в этом формате, способ обнаружения необходимости округления и округления на основе комплекса систем счисления.

1. Формат представления чисел в МСС

Пусть

$$A = K \cdot 10^t, \tag{1}$$

где K — целое число, такое, что $|K| \le 10^{n_f} - 1$, $t \ge 0$ — порядок, такой, что удовлетворяет неравенству $0 \le t \le k_f$; n_f — натуральное число, характеризующее длину мантиссы числа с плавающей точкой; k_f — целое число, характеризующее диапазон представимых чисел.

Модулярный формат представления чисел вида (1), предложенный в работе [4], имеет вид:

$$A = [(\alpha_1, \alpha_2, ..., \alpha_i, ..., \alpha_n), t],$$

где $\alpha_i = |K|_{p_i}, i = 1, ..., n; p_1, p_2, ..., p_n$ — модули МСС (простые числа), такие, что $2 < p_1 < p_2 < , ..., < p_n$. Рассмотрим условия выбора модулей МСС.

2. Диапазон представления чисел

Пусть P произведение модулей MCC:

$$P = \prod_{i=1}^{p} p_{i}.$$

Так как $p_1, p_2, ..., p_n$ — простые числа, большие двух, и их произведение является нечетным числом, то число P-1 является четным и для представле-

¹ Работа выполнена при поддержке гранта президента для молодых докторов наук МД-739.2013.9.

ния положительных и отрицательных чисел в МСС используются диапазоны:

$$\left[0,...,\frac{1}{2}(P-1)\right]$$
 — для положительных чисел; $\left[\frac{1}{2}(P-1)+1,...,P-1\right]$ — для отрицательных чисел. (2)

В МСС возможно представить все целые числа диапазона:

$$\left[-\frac{1}{2}(P-1), ..., \frac{1}{2}(P-1)\right].$$
 (3)

В связи с тем, что округление является сложной операцией в МСС, оно выполняется не после каждой операции, а после группы операций, т. е. проводится отложенное округление.

Округление проводится, когда результат выходит за пределы допустимого диапазона в МСС, определяемого диапазоном (3). Следовательно, частота округлений в процессе высокоточных вычислений зависит от диапазона представления чисел. Для точного представления результата произведения двух чисел в МСС необходимо, чтобы округление выполнялось в случае его выхода не из диапазона (3), а из следующего диапазона:

$$\left[-\frac{1}{2}(P_2-1), ..., \frac{1}{2}(P_2-1)\right],$$
 (4)

где

$$P_2 = \prod_{i=1}^{\lfloor n/2 \rfloor} p_i.$$

Рассмотрим правила выполнения арифметических операций в данном формате [6].

3. Правила выполнения арифметических операций в МСС

Так как деление в MCC является сложной операцией, то высокоточные вычисления в модулярной арифметике имеет смысл рассматривать применительно к тем задачам, в которых не используется деление вообще или деление только на константы. В последнем случае, деление заменится умножением на обратные к этим константам, вычисленные заранее.

В данной работе рассмотрены три арифметические операции: сложение, вычитание и умножение. Арифметические операции с числами вида (1) выполняются по правилам формата с плавающей точкой, но отличаются тем, что при выравнивании порядков (сложении или вычитании) мантисса большего числа сдвигается вправо, а не влево на величину, равную разности порядков большего и меньшего чисел, а порядок большего уменьшается на величину сдвига. Такой способ выравнивания порядков выбран ввиду сложности операции сдвига влево или деления в МСС.

Правила выполнения арифметических операций сложения, вычитания и умножения в модуляр-

ной системе счисления с числами A_1 , A_2 и результатом A_3 , где

$$\begin{split} A_1 &= [(\alpha_1, \, \alpha_2, \, ..., \, \alpha_i, \, ..., \, \alpha_n), \, t_1]; \\ A_2 &= [(\beta_1, \, \beta_2, \, ..., \, \beta_i, \, ..., \, \beta_n), \, t_2]; \\ A_3 &= [(\gamma_1, \, \gamma_2, \, ..., \, \gamma_i, \, ..., \, \gamma_n), \, t_3], \end{split}$$

представлены ниже.

Сложение

Шаг № 1. Вычислить:
$$\gamma_i = |10^{t_1 - \min(t_1, t_2)} \cdot \alpha_i + 10^{t_2 - \min(t_1, t_2)} \cdot \beta_i|_{p_i}, i = 1, ..., n.$$
Шаг № 2. $t_3 = \min(t_1, t_2)$.

Вычитание

Шаг № 1. Вычислить:
$$\gamma_i \equiv \left|10^{t_1 - \min(t_1, t_2)} \cdot \alpha_i - 10^{t_2 - \min(t_1, t_2)} \cdot \beta_i\right|_{p_i}, i = 1, ..., n.$$
 Шаг № 2. $t_3 = \min(t_1, t_2)$.

Умножение

Шаг
$$\mathcal{N}_{2}$$
 1. Вычислить: $\gamma_{i}=\left|\alpha_{i}\cdot\beta_{i}\right|_{p_{i}},\ i=1,\ ...,\ n.$ Шаг \mathcal{N}_{2} 2. $t_{3}=t_{1}+t_{2}.$ Операция округления выполняется тогда, когда

Операция округления выполняется тогда, когда результат выходит за пределы допустимого диапазона. Рассмотрим в следующем пункте способ обнаружения необходимости округления.

4. Способ обнаружения необходимости округления

Пусть

$$A_1 = K_1 \cdot 10^{t_1};$$

 $A_2 = K_2 \cdot 10^{t_2},$

или в МСС

$$A_1 = [(\alpha_1, \alpha_2, ..., \alpha_i, ..., \alpha_n), t_1];$$

$$A_2 = [(\beta_1, \beta_2, ..., \beta_i, ..., \beta_n), t_2].$$

Тогда

$$A_1 \cdot A_2 = 10^{\lg K_1 + \lg K_2} \cdot 10^{t_1} \cdot 10^{t_2} = 10^{\lg K_1 + \lg K_2 + t_1 + t_2}$$

и справедливо неравенство

$$\begin{split} A_{1} \cdot A_{2} &= K_{1} \cdot 10^{t_{1}} + K_{2} \cdot 10^{t_{2}} \leq 10^{\left \lceil \lg K_{1} \right \rceil} \cdot 10^{t_{1}} + \\ &+ 10^{\left \lceil \lg K_{2} \right \rceil} \cdot 10^{t_{2}} = 10^{\left \lceil \lg K_{1} \right \rceil + t_{1}} + 10^{\left \lceil \lg K_{2} \right \rceil + t_{2}} \leq \\ &\leq 2 \cdot 10^{\max(\left \lceil \lg K_{1} \right \rceil + t_{1}, \left \lceil \lg K_{2} \right \rceil + t_{2})} = \\ &= 10^{\left \lg 2 + \max(\left \lceil \lg K_{1} \right \rceil + t_{1}, \left \lceil \lg K_{2} \right \rceil + t_{2})}. \end{split}$$

Из последнего неравенства следует, что если после выполнения арифметической операции выполняются следующие условия:

для сложения или вычитания:

$$\lg 2 \max(\lceil \lg K_1 \rceil + t_1, \lceil \lg K_2 \rceil + t_2) > \left\lceil \lg \frac{1}{2} (P_2 - 1) \right\rceil; (5)$$

для умножения:

$$\lg K_1 + \lg K_2 + t_1 + t_2 > \left\lceil \lg \frac{1}{2} (P - 1) \right\rceil,$$
 (6)

то округление результата необходимо.

Рассмотрим в следующем разделе операцию округления на основе знакоразрядной системы счисления.

5. Операция округления в МСС

Пусть при выполнении арифметических операций в МСС получен результат $A_3 = [(\gamma_1, \gamma_2, ..., \gamma_i, ..., \gamma_n), t_3],$ требующий округления. Округление проводится путем отбрасывания разрядов дробной части результата до n_f цифр в мантиссе A_3 и корректировке порядка t_3 .

Запишем мантиссу $K(A_3)$ числа A_3 в виде:

$$K(A_3) = \sum_{i=1}^{n} B_i \gamma_i - rank P, \tag{7}$$

где B_i — ортогональные базисы; rank — ранг, наибольшее положительное целое число, такое, что $K \le P$.

Ортогональные базисы B_i являются константами для MCC с заданными модулями и определяются по формулам

$$B_{i} = m_{i} \frac{P}{p_{i}};$$

$$m_{i} = \left| \frac{P}{p_{i}} \right|^{-1}.$$
(8)

Максимально возможное значение *rank* определяется из следующих неравенств:

$$\sum_{i=1}^{n} B_{i} \beta_{i} \leq \sum_{i=1}^{n} B_{i} (p_{i} - 1) <$$

$$< \sum_{i=1}^{n} B_{i} p_{i} = \sum_{i=1}^{n} m_{i} \frac{P}{p_{i}} p_{i} = \sum_{i=1}^{n} m_{i} P = P \left(\sum_{i=1}^{n} p_{i} - n \right).$$

Отсюда видно, что

$$rank < \left(\sum_{i=1}^{n} p_i - n\right).$$

Рассмотрим вспомогательный алгоритм определения ранга $rank\ K(A_3)$ на основе позиционной характеристики, используемый при округлении.

Из выражения (7) следует, что

$$\frac{K(A_3)}{P} = \sum_{i=1}^{n} \frac{B_i \gamma_i}{P} - rank, \tag{9}$$

и ранг определяется следующим образом:

$$rank = \left\lfloor \frac{K(A_3)}{P} \right\rfloor = \left\lfloor \sum_{i=1}^{n} \frac{B_i \gamma_i}{P} \right\rfloor. \tag{10}$$

Если $K(A_3) < 0$, то из диапазона (2) следует, что значение выражения (9) больше чем 0,5 и меньше 1, если $K(A_3) > 0$, то это значение больше нуля и меньше 0,5.

Так как $K(A_3)$ принадлежит диапазону (4), то

В МСС при представлении отрицательных чисел как дополнения до модуля получим, что

$$\left| \frac{K(A_3)}{P} \right|_{1} \in \left[1 - \frac{1}{2 \prod_{i=|n/2|+1}^{n} p_i}, ..., 1 + \frac{1}{2 \prod_{i=|n/2|+1}^{n} p_i} \right]. (11)$$

Из выражения (11) следует, например, что при n = 10 и значении модулей порядка 10^5 , для отрицательных значений

$$\left| \frac{K(A_3)}{P} \right|_1 \in \left[1 - \frac{1}{2 \cdot 10^{25}}, ..., 1 \right],$$

для положительных значений

$$\left| \frac{K(A_3)}{P} \right|_1 \in \left[1, ..., 1 + \frac{1}{2 \cdot 10^{25}} \right].$$

Очевидно, что вследствие ошибок округления при вычислении значения выражения (10) в формате с плавающей точкой с двойной точностью значение rank для отрицательных чисел будет на единицу больше, чем истинное значение, начиная с некоторого n. Величины B_i/P являются константами и могут быть вычислены в формате с плавающей точкой заранее.

Схема для быстрого определения ранга представлена на рис. 1. В соответствии с этой схемой значение $rank\ K(A_3)$ может быть вычислено по формуле (10) за $\lceil \log_2 n \rceil + 1$ шагов.

После определения ранга $rank\ K(A_3)$ для округления результата A_3 , как было указано выше, требуется отбросить все цифры дробной части результата до n_f цифр в мантиссе A_3 и корректировать порядок t_3 .

Округление мантиссы $K(A_3)$ числа A_3 , определяемой по формуле (7), требует вычислений с плавающей точкой с точностью до $\lceil \lg P \rceil$ цифр, например, для n=10 и модулей порядка 10^5 точность вычислений — 50 десятичных цифр. Очевидно, что такая точность вычислений резко увеличит общее время операции округления.

Рассмотрим знакоразрядную систему счисления с цифрами в диапазоне [-6, ..., 6], в которой возможно ускоренное вычисление значения выражения (7).

Сложение чисел в этой системе счисления $(x_{n-1}, ..., x_0) + (y_{n-1}, ..., y_0) = (s_{n-1}, ..., s_0)$ про-

водится справа налево и осуществляется в два этапа по формулам

$$u_i = x_i + y_i - 10c_i,$$

где

$$c_i = \begin{cases} 1, \text{ если } (x_i + y_i \geqslant 6, \\ -1, \text{ если } (x_i + y_i \leqslant -6, \\ 0, \text{ если } |x_i + y_i| < 6, \end{cases}$$

и результат суммы определяется по формуле

$$s_i = u_i + c_{i-1}.$$

В знакоразрядной системе счисления исключается распространение переноса от старшего разряда к младшему, благодаря чему арифметические операции сложения, вычитания распараллеливаются и время их выполнения не зависит от разрядности входных данных.

Рассмотрим способ ускоренного вычисления значения выражения (7) в знакоразрядной системе счисления с цифрами в диапазоне [-6, ..., 6].

Пусть константы B_i , P заданы в знакоразрядной системе счисления.

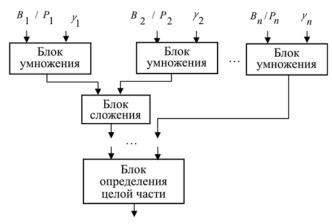


Рис. 1. Схема для быстрого вычисления ранга

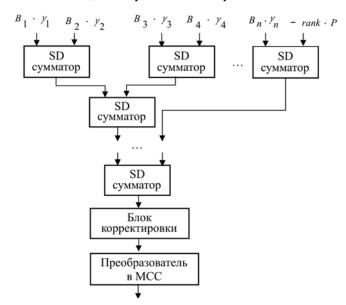


Рис. 2. Схема параллельного округления

Выражения вида

$$jB_{i}, j = 1...p_{i} - 1;$$

 $jP, j = 1... \left(\sum_{i=1}^{n} p_{i} - n\right)$ (12)

являются константами и могут храниться в памяти ЭВМ, тогда процесс округления можно представить в виде схемы, приведенной на рис. 2.

В соответствии с приведенной схемой $K(A_3)$ может быть вычислено по формуле (7) за $\lceil \log_2 n \rceil + 1$ шагов при известном значении rank. Блок корректировки, представленный на рис. 2, выполняет отбрасывание старших разрядов результата до n_f цифр и уменьшает порядок t_3 на число отброшенных цифр. Последний блок преобразует полученный после округления результат в МСС.

Общая оценка числа шагов для округления результата в соответствии со схемой рис. 2 оценивается следующим выражением:

$$\lceil \log_2 n \rceil + 2(\lceil \log_2 n \rceil + 1) + 1 + \lceil \log_2 n \rceil = 4\lceil \log_2 n \rceil + 3.$$

Недостатком приведенного способа округления является необходимость хранения в памяти ЭВМ массивов констант (12) по каждому модулю. Рассмотрим способ уменьшения числа хранимых констант.

Запишем γ_i и rank в десятичной системе счисления в следующем виде:

$$\gamma_{i} = \gamma_{i}^{0} \cdot 10^{n_{1}} + \gamma_{i}^{1} \cdot 10^{n_{1}-1} + \dots + \gamma_{i}^{n_{1}}, i = 1 \dots n,
rank = r_{0} \cdot 10^{n_{2}} + r_{1} \cdot 10^{n_{2}-1} + \dots + r_{n_{2}},$$
(13)

где n_1 , n_2 — целые числа, такие, что

$$n_1 = \lfloor \lg p_i \rfloor, \ n_2 = \left\lfloor \lg \left(\sum_{i=1}^n p_i - n \right) \right\rfloor,$$

$$0 \le \gamma_i^j \le 9, i = 1...n, j = 1...n_1, 0 \le r_j \le 9, j = 1...n_2.$$

Подставим (13) в выражение (7) и получим

$$K(A_3) = \sum_{i=1}^{n} B_i (\gamma_i^0 \cdot 10^{n_1} + \gamma_i^1 \cdot 10^{n_1 - 1} + \dots + \gamma_i^{n_1}) - (r_0 \cdot 10^{n_2} + r_1 \cdot 10^{n_2 - 1} + \dots + r_{n_2}) P, \qquad (14)$$

$$i = 1...9.$$

При нахождении значения $K(A_3)$ в формуле (14) по схеме, представленной на рис. 2, требуется хранение меньшего числа констант, и суммирование выполняется параллельно по степеням десятки.

Заключение

Как было указано выше, округление в модулярной системе счисления является сложной операцией. Предложен способ округления в комплексе систем счисления МСС и знакоразрядной, позволяющий распараллелить операцию округления. Данный способ применим при реализации других немодульных операций. Наибольший эффект ускорения достигается при аппаратной реализации параллельного округления.

Список литературы

- 1. Bailey D. H. High-Precision Computation and Mathematical Physics // Lawrence Berkeley National Laboratory, 2009. URL: http:/ crd-legacy.lbl.gov/~dhbailey/dhbpapers/dhb-jmb-acat08.pdf
- 2. Соловьев Р. А., Балака Е. С., Тельпухов Д. В. Устройство для вычисления скалярного произведения векторов с коррекцией ошибок на базе системы остаточных классов // Проблемы разработки перспективных микро- и наноэлектронных систем -2014. Сборник трудов / Под общ. ред.А. Л. Стемпковского. М.: Изд. ИППМ РАН, 2014. Часть IV. С. 173—178.

 3. **Phatak D. S., Koren I.** Hybrid Signed Digit Number Systems:
- A Unified Framework for Redundant Number Representations with

Bounded Carry Propagation Chains // IEEE Transactions on Computers. August 1994. V. 43. N. 8. P. 880-891.

- 4. Дзегеленок И. И, Оцоков Ш. А. Алгебраизация числовых представлений в обеспечении высокоточных суперкомпьютерных вычислений // Вестник МЭИ. 2010. № 3. С. 107—116.
- 5. Оцоков Ш. А. Эффективный алгоритм округления в высокоточных вычислениях в модулярной арифметике // Информационные технологии. 2013. № 10. С. 35—39.
- 6. Исупов К. С. Модулярно-позиционный формат и программный пакет для разрядно-параллельных вычислений высокой точности // Вестник Южноуральского государственного университета. 2013. № 1.

Sh. A. Otsokov. Associate Professor, e-mail: shamil24@mail.ru, National Research University "MPEI"

Acceleration of High-Precision Computation Based on Parallelization of Group Number Systems

In article the method of acceleration of high-precision computation based on parallelization of two numeral systems is offered: modular and signed-digital. Advantages of this approach are connected with high speed of not modular operations, such as the back transformation to a position numeral system from residue number system, comparisons of numbers, definition of a sign.

Keywords: modular arithmetic, high accuracy computation, redundant number system

References

1. Bailey D. H. High-Precision Computation and Mathematical Physics. Lawrence Berkeley National Laboratory, 2009. URL: http:/ crd-legacy.lbl.gov/~dhbailey/dhbpapers/dhb-jmb-acat08.pdf

- 2. Solov'ev R. A., Balaka E. S., Tel'pukhov D. V. Ustroistvo dlya vychisleniya skalyarnogo proizvedeniya vektorov s korrektsiei oshibok na baze sistemy ostatochnykh klassov. *Problemy razranotki perspektivnykh mikro- i nanoelektronnykh sistem—2014.* Sbornik trudov pod obshch. red. ak. RAN A. L. Stempkovskogo. M.: IPPM RAN, 2014. Chast' IV. P. 173-178.
- Phatak D. S., Koren I. Hybrid Signed Digit Number Systems: A Unified Framework for Redundant Number Representations with

Bounded Carry Propagation Chains. IEEE Transactions on Computers. August 1994. V. 43. N. 8. P. 880-891.

- 4. Dzegelenok I. I., Otsokov Sh. A. Algebraizatsiya chislovykh predstavlenii v obespechenii vysokotochnykh superkomp'yuternykh vychislenii. Vestnik MEI. 2010. N. 3. P. 107-116.
- 5. Otsokov Sh. A. Effektivnyi algoritm okrugleniya v vysokotochnykh vychisleniyakh c modulyarnoi arifmetike. *Informatsionnye tekhnologii.* 2013. N. 10. P. 35—39.
- 6. Isupov K. S. Modulyarno-pozitsionnyi format i programmnyi paket dlya razryadno-parallel'nykh vychiskenii vysokoi tochnosti, Vestnik Yuzhnoural'skogo gosudarstvennogo universiteta. 2013. N. 1.

УДК 004.272.42

Р. Н. Федюнин, канд. техн. наук, доц., e-mail: frn penza@mail.ru Пензенский государственный университет, г. Пенза

Оценка пространственной сложности функциональных блоков АЛУ на базе однородных вычислительных структур

Рассмотрен способ оценки пространственной сложности вычислительных модулей на базе систолических структур. Данный подход позволяет быстро и адекватно провести оценку аппаратных затрат на реализацию вычислительных алгоритмов в рамках однородных вычислительных структур как позиционной, так и модулярной арифметики.

Ключевые слова: пространственная сложность, систолическая структура, модулярная позиционная арифметика, класс вычислений

При проектировании вычислительных устройств разработчики, помимо прочих, выделяют две задачи: расчет временной и пространственной (в данном примере она же — аппаратная) сложности вычислений [1]. В данной работе рассмотрен способ оценки

пространственной сложности вычислительных модулей [2] на базе систолических структур [3-5]. Данный подход позволяет быстро и адекватно провести теоретическую оценку аппаратных затрат на реализацию вычислительных алгоритмов в рамках